币灵灵财经
首页 > 币圈新闻 > 文章正文

Crypto和AI的融合:四个关键交叉点

币灵灵财经 2024-11-23 03:56 300

Crypto 和 AI 的世界一直在并行发展,每个领域都在突破技术和创新的界限。随着我们在这两个领域不断取得进展,越来越清楚的是,它们的未来是密切纠缠在一起的。在这篇文章中,我们将探索 Crypto 和 AI 十字路口的四个重要交叉点。

“显卡的AirBnB”模型

AI 和机器学习 (ML) 工作负载的兴起对 Nvidia A100 等高性能显卡产生了巨大需求。作为回应,出现了一个类似于“显卡的AirBnB”的新市场。这允许个人和组织出租他们未使用的 GPU 资源,以满足 AI 研究人员和开发人员的需求。

验证问题:无法知道不受信任的计算机是否执行了特定代码段。因此,很难相信不受信任的计算机的输出。然而,这个问题可以通过信誉系统与加密经济质押相结合来缓解,在某些情况下,还可以通过支持快速验证的新型模型来缓解。

除了 Render Network,还有一些其他公司在这个领域工作:Akash、BitTensor、Gensyn、Prodia、Together,以及其他仍处于开发中的项目。

代币激励RLHF (Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)

随着以下情况变得更加真实,代币激励可能会改善 RLHF:

金融和经济:改进预测模型、风险评估和算法交易系统。

零知识机器学习 (zkML)

预言机解决了这个问题的一部分。但是预言机还不够。仅仅将现实世界数据中继到链上是不够的。在进入链之前,需要计算很多数据。例如,让我们考虑一个收益聚合器,它需要在不同池子之间转移存款以赚取更多收益。为了以信任最小化的方式做到这一点,聚合器需要计算所有可用池子的当前收益和风险。这很快就变成了适合 ML 的优化问题。然而,在链上计算 ML 的成本太高,因此这对 zkML 来说是一个机会。

深度伪造时代的真实性

随着深度伪造变得越来越复杂,保持对数字媒体的真实性和信任至关重要。一种解决方案涉及利用公钥密码学,允许创作者通过使用公钥对其内容进行签名来保证其内容的真实性。

      Solana Labs 最近推出了Saga电话,它由Solana 移动堆栈(Solana Mobile Stack,SMS)驱动。在接下来的几个月里,我希望 SMS 能够得到更新,以便每张照片都使用 SMS 进行签名种子库SDK,证明照片不是由 AI 生成的。

结论

“显卡的 AirBnB”模型提供了去中心化和民主化访问高性能 GPU 的潜力,使更多的人和组织能够为 AI 研究和开发做出贡献。代币激励的 RLHF 可以应用于从工程和金融到教育和环境科学的各个行业,通过利用领域专家的知识改进人工智能模型。ZKML 将允许区块链根据现实世界中的复杂变化更新链上的财务状态。最后,通过将公钥密码学与现实世界的身份验证和区块链技术相结合,我们可以创建一个强大的系统来应对深度伪造带来的挑战并保持对数字媒体的信任。

随着我们不断发现加密和人工智能之间的协同作用,我们无疑会发现更多机会来推动创新、创造价值并解决当今社会面临的一些最紧迫的问题。拥抱这两个领域之间的交叉点将帮助我们突破技术的界限,塑造一个更加互联、高效和真实的未来。